Factored Planning
نویسندگان
چکیده
We present a general-purpose method for dynamically factoring a planning domain, whose structure is then exploited by our generic planning method to find sound and complete plans. The planning algorithm’s time complexity scales linearly with the size of the domain, and at worst exponentially with the size of the largest subdomain and interaction between subdomains. The factorization procedure divides a planning domain into subdomains that are organized in a tree structure such that interaction between neighboring subdomains in the tree is minimized. The combined planning algorithm is sound and complete, and we demonstrate it on a representative planning domain. The algorithm appears to scale to very large problems regardless of the black box planner used.
منابع مشابه
Factored Planning using Decomposition Trees
Improving AI planning algorithms relies on the ability to exploit the structure of the problem at hand. A promising direction is that of factored planning, where the domain is partitioned into subdomains with as little interaction as possible. Recent work in this field has led to an detailed theoretical analysis of such approaches and to a couple of high level planning algorithms, but with no p...
متن کاملFactored Planning Using Decomposition Trees
Improving AI planning algorithms relies on the ability to exploit the structure of the problem at hand. A promising direction is that of factored planning, where the domain is partitioned into subdomains with as little interaction as possible. Recent work in this field has led to an detailed theoretical analysis of such approaches and to a couple of high-level planning algorithms, but with no p...
متن کاملCost-Optimal Factored Planning: Promises and Pitfalls
Factored planning methods aim to exploit locality to efficiently solve large but “loosely coupled” planning problems by computing solutions locally and propagating limited information between components. However, all factored planning methods presented so far work with representations that require certain parameters to be bounded (e.g. number of coordination points between local plans considere...
متن کاملMemory-Effcient Symbolic Online Planning for Factored MDPs
Factored Markov Decision Processes (MDP) are a de facto standard for compactly modeling sequential decision making problems with uncertainty. Offline planning based on symbolic operators exploits the factored structure of MDPs, but is memory intensive. We present new memoryefficient symbolic operators for online planning, prove the soundness of the operators, and show convergence of the corresp...
متن کاملFactored Upper Bounds for Multiagent Planning Problems under Uncertainty with Non-Factored Value Functions
Nowadays, multiagent planning under uncertainty scales to tens or even hundreds of agents. However, current methods either are restricted to problems with factored value functions, or provide solutions without any guarantees on quality. Methods in the former category typically build on heuristic search using upper bounds on the value function. Unfortunately, no techniques exist to compute such ...
متن کاملRepresenting and Solving Factored Markov Decision Processes with Imprecise Probabilities
This paper investigates Factored Markov Decision Processes with Imprecise Probabilities; that is, Markov Decision Processes where transition probabilities are imprecisely specified, and where their specification does not deal directly with states, but rather with factored representations of states. We first define a Factored MDPIP, based on a multilinear formulation for MDPIPs; then we propose ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003